
Scalable Data Debugging for Neighborhood-based
Recommendation with Data Shapley Values

Barrie Kersbergen

Bol & University of Amsterdam

Amsterdam, The Netherlands

bkersbergen@bol.com

Olivier Sprangers

Nixtla

Amsterdam, The Netherlands

olivier@nixtla.io

Bojan Karlaš

Harvard University

Boston, United States

bkarlas@mgh.harvard.edu

Maarten de Rijke

University of Amsterdam

Amsterdam, The Netherlands

m.derijke@uva.nl

Sebastian Schelter

BIFOLD & TU Berlin

Berlin, Germany

schelter@tu-berlin.de

Abstract
Machine learning-powered recommendation systems help users

find items they like. Issues in the interaction data processed by

these systems frequently lead to problems, e.g., to the accidental

recommendation of low-quality products or dangerous items. Such

data issues are hard to anticipate upfront, and are typically de-

tected post-deployment after they have already impacted the user

experience. We argue that a principled data debugging process is

required during which human experts identify potentially hurtful

data issues and preemptively mitigate them. Recent notions of “data

importance,” such as the Data Shapley Value (DSV), represent a

promising direction to identify training data points likely to cause

issues. However, the scale of real-world interaction datasets makes

it infeasible to apply existing techniques to compute the DSV in

recommendation scenarios.

We tackle this problem by introducing the KMC-Shapley algo-

rithm for the scalable estimation of Data Shapley Values in neighbor-

hood-based recommendation on sparse interaction data. We con-

duct an experimental evaluation of the efficiency and scalability of

our algorithm on both public and proprietary datasets with millions

of interactions, and showcase that the DSV identifies impactful data

points for two recommendation tasks in e-commerce. Furthermore,

we discuss applications of the DSV on real-world click and purchase

data in e-commerce, such as identifying dangerous products or im-

proving the ecological sustainability of product recommendations.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Data importance, Data Shapley value, Neighborhood-based recom-

mendation

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

RecSys ’25, Prague, Czech Republic
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1364-4/2025/09

https://doi.org/10.1145/3705328.3748049

ACM Reference Format:
Barrie Kersbergen, Olivier Sprangers, Bojan Karlaš, Maarten de Rijke, and Se-

bastian Schelter. 2025. Scalable Data Debugging for Neighborhood-based

Recommendation with Data Shapley Values. In Proceedings of the Nine-
teenth ACM Conference on Recommender Systems (RecSys ’25), September
22–26, 2025, Prague, Czech Republic. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3705328.3748049

1 Introduction
Recommendation systems powered by machine learning help users

to find the items that they need from large inventories. Real-world

recommenders operate on large datasets that capture complex in-

teractions between users and items. However issues in this inter-

action data frequently lead to system failures. Examples from the

e-commerce domain include the accidental recommendation of

dangerous items [28, 38], externally manipulated rankings [4], or

third-party products with low-quality metadata [29, 37]. Further-

more, the data collection process is exposed to various sources of

noise, e.g., “multi-journeys,” where a single user shops for multiple

things simultaneously (such as presents for family members of dif-

ferent age groups), or “unnatural interaction patterns” caused by

bots crawling the website to record prices.

To make matters worse, these issues are hard to anticipate up-

front, and are typically detected post-deployment after they have

already impacted the user experience. For example, at Bol, a large

European e-commerce platform, we recently became aware of a

situation where sensitive adult items were included in the recom-

mendations on product pages of children’s toys, due to the unex-

pected co-occurrence of these types of products in some historical

browsing sessions. This incident prompted an urgent live patch of

the system with custom filtering rules, followed by the manual iden-

tification and removal of the session data in which these unwanted

co-occurrences appeared.

Data debugging via data importance. Preventing such predica-

ments requires a principled data debugging process during which

human experts identify potentially hurtful data issues and preemp-

tively mitigate them. However, the scale of real-world training

datasets renders this process prohibitively expensive and time-

consuming. This shift reflects a growing awareness of the critical

role of training data in shaping model behavior. A promising ap-

proach is to identify data points likely to cause issues via data
importance, a concept recently introduced in the machine learning

https://orcid.org/0000-0001-9486-128X
https://orcid.org/0000-0002-0533-4574
https://orcid.org/0000-0002-6462-3579
https://orcid.org/0000-0002-1086-0202
https://orcid.org/0000-0003-4722-5840
https://doi.org/10.1145/3705328.3748049
https://doi.org/10.1145/3705328.3748049

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Barrie Kersbergen, Olivier Sprangers, Bojan Karlaš, Maarten de Rijke, and Sebastian Schelter

community. A popular notion of importance is the Data Shapley
value (DSV) [8], which has been recognized for its effectiveness

in some data debugging tasks [14, 15], including model auditing,

dataset pruning, and outlier detection.

However, existing research on the DSV primarily focuses on

classification tasks and has not been applied to recommendation

tasks (except for a concurrent work on data pruning [42]). More-

over, current methods to overcome the exponential complexity of

calculating the Data Shapley value are not suitable for large-scale

recommender models (Section 2). Some techniques treat the model

as a black box and incur repeated retraining [8, 19], which is infea-

sible for large datasets, while others make assumptions about the

additivity of model quality metrics [13, 15] that do not apply to the

ranking metrics of recommender systems.

Overview and contributions. Our work aims to bridge this gap.

We focus on the large class of neighborhood-based recommendation

models on sparse interaction data [3, 5, 6, 11, 12, 20, 21, 23, 25, 27,

32, 33]. We detail how to leverage the characteristics of such KNN

models to efficiently compute Data Shapley values for datasets with

millions of interactions (Section 3.2). Based on these characteristics,

we design a specialized variant of a recent Monte Carlo-based algo-

rithm [8] for estimating the DSV, which can skip certain expensive

computations in many cases (Section 3.3). In particular, we provide

the following contributions:

KMC-Shapley algorithm. We design the KMC-Shapley algorithm for

the estimation of the Data Shapley value for neighborhood-based

recommendation on sparse interaction data. This algorithm is a

scalable variant of a recent Monte Carlo-based algorithm [8] for

estimating the DSV, tailored to KNN models (Section 3).

Experimental evaluation. We conduct an experimental evaluation

of the efficiency and scalability of our algorithm on both public

and proprietary datasets with millions of interactions. Moreover,

we showcase that the DSV identifies impactful data points for two

recommendation tasks in e-commerce (Section 4).

Discussion of applications in e-commerce. We discuss applications of

the DSV on click and purchase data in e-commerce from Bol, such as

identifying dangerous and low-quality products as well as improv-

ing of the ecological sustainability of product recommendations via

data pruning (Section 5).

Open source implementation. We implement our approach in Rust

with a Python frontend and make it available at https://github.com/

bkersbergen/illoominate.

2 Problem Statement
We formally introduce data importance (see Figure 1 inspired by

[8]) and the scalability problem in the focus of this paper.

2.1 Data Importance
The goal of data importance is to quantify the impact of each in-

dividual training data point on the quality of a machine learning

model [9]. Many notions of importance rely on measuring the im-

pact of excluding a given data point from the model’s training data

(or certain subsets of it) [8, 19, 40]. LetD = {x1, . . . , x𝑛} denote the
set of 𝑛 training data points whose importance we want to compute.

Let the utility function 𝑉 (𝑆) measure the performance of a model

trained on a subset 𝑆 ⊆ D of the training data. For example, 𝑉

Interaction Data  
for Training

Recommendation 
Model

Evaluation 
Metric

Data  
Importance

(a)

(b)

= 0.5
= 0.5

= 0.0

Re
ca

ll
1.

0
Re

ca
ll

0.
5

Re
ca

ll
0.

5
Re

ca
ll

0.
0

Re
ca

ll
1.

0
Re

ca
ll

0.
5

Re
ca

ll
0.

5
Re

ca
ll

0.
0

= 0.5

0.5
1

0.5
2

0.5
2

0.5
1

Validation 
Data

1
3

() = 0.5+ + +

Figure 1: (a) High-level overview of data importance for rec-
ommender systems. (b) The importance of each piece of data
(e.g., the interactions of a given user) is a weighted average of
its contribution to each subset of the remaining interactions.
The importance scores are determined by Equation (2).

might compute the recall of a recommendation model on held-out

data D𝑣𝑎𝑙 . We discuss the two most prominent notions of data

importance here:

Leave-One-Out error (LOO). The simplest way to measure the

importance of a data point x𝑖 ∈ D is its leave-one-out error, i.e.,

the change in utility 𝑉 when the data point x𝑖 is excluded from the

training data D:

𝑉 (D) −𝑉 (D \ {x𝑖 }) . (1)

While the LOO is easy to compute, it is empirically found to be

highly noisy [19] and typically outperformed by more complex

notions of importance in its helpfulness for downstream tasks [9].

Data Shapley value (DSV). Recently, the Data Shapley value (DSV)
has been proposed as an equitable way to measure the importance

of training data points for a machine learning model [8]. The DSV

determines the “value” 𝜙𝑖 of each data point x𝑖 from the data D
based on the well-known Shapley value from game theory [18]:

𝜙𝑖 =
1

𝑛

∑︁
𝑆⊆D\{x𝑖 }

(
𝑛 − 1
|𝑆 |

)−1
𝑉 (𝑆 ∪ {x𝑖 }) −𝑉 (𝑆). (2)

The DSV measures the weighted average of the marginal contribu-

tion 𝑉 (𝑆 ∪ {x𝑖 }) −𝑉 (𝑆) of adding the data point x𝑖 to all 2
|D |−1

subsets 𝑆 of the training data D. See Figure 1(b) for a toy example.

The DSV is challenging to compute but has been shown toworkwell

empirically, e.g., for tasks like detecting mislabeled data [1, 8, 15, 19].

Note that a major advantage of data importance techniques for our

scenario is that they are able to identify various kinds of erroneous

data points without requiring explicit knowledge of the actual

error types upfront, in contrast to classical supervised learning

approaches.

2.2 Scalability Issues
Computing exact Data Shapley values, as defined in Equation (2), is

intractable because the number of subsets to process is exponential

in |D|. This renders exact computation infeasible for real-world

https://github.com/bkersbergen/illoominate
https://github.com/bkersbergen/illoominate

Scalable Data Debugging for Neighborhood-based Recommendation with Data Shapley Values RecSys ’25, September 22–26, 2025, Prague, Czech Republic

Algorithm 1 TMC-Shapley algorithm as proposed in [8].

1 function tmc-shapley(D,𝑉)

2 𝜙 = {𝜙1, ..., 𝜙𝑛 } ← 0

3 while not converged :

4 𝜋 ← random permutation of data points in D
5 𝑣prev ← 𝑉 (∅)
6 for 𝑗 ∈ 1 . . . 𝑛 : // Iterate through permutation

7 if |𝑉 (𝐷) − 𝑣prev | > performance tolerance // Truncation

8 𝑆𝑖𝜋 ← set of data points before position 𝑗 in 𝜋

9 x𝑖 ← data point at position 𝑗 in 𝜋

10 𝑣 ← 𝑉 (𝑆𝑖𝜋 ∪ {x𝑖 }) // Retrain and evaluate model

11 𝜙𝑖 ← 𝜙𝑖 + (𝑣 − 𝑣prev) // // Update marginal contribution

12 𝑣prev ← 𝑣

13 𝑡 ← number of permutations evaluated

14 𝜙 ← 1

𝑡
𝜙 // Normalise by number of iterations

15 return Shapley values 𝜙 = {𝜙1, . . . , 𝜙𝑛 }

datasets with millions of interactions. Even worse, each subset 𝑆 to

process requires the re-training and evaluation of the underlying

recommendation model.

TMC-Shapley. Computing the Data Shapley value 𝜙𝑖 for a data

point 𝑥𝑖 ∈ D can be formulated as an expectation calculation prob-

lem: 𝜙𝑖 = E𝜋∼Π
[
𝑉 (𝑆𝑖𝜋 ∪ {x𝑖 }) − 𝑉 (𝑆𝑖𝜋)

]
, where Π denotes the

uniform distribution over all 𝑛! permutations of the data points in

D and 𝑆𝑖𝜋 is the set of all data points coming before x𝑖 in the per-

mutation 𝜋 [8]. For this formulation, Ghorbani and Zou [8] present

the TMC-Shapley algorithm (see Algorithm 1), which conducts a

Monte Carlo (MC) estimation of the Data Shapley values.
1
TMC-

Shapley repeatedly samples a permutation 𝜋 from Π, computes

the marginal contribution 𝑉 (𝑆𝑖𝜋 ∪ {x𝑖 }) −𝑉 (𝑆𝑖𝜋) of a data point x𝑖
over 𝑆𝑖𝜋 in Lines 10 and 11, and iterates through all 𝑛 data points

in the permutation (Line 6). Furthermore, it applies a truncation

technique, by stopping to compute marginal contributions once

the obtained utility is within a threshold of the utility value 𝑉 (𝐷)
of the whole dataset (Line 7). A convergence test is performed by

checking if the mean absolute percentage deviation of the Shapley

value for all data points is below a given threshold.

Scalability issues in TMC-Shapley. Even Monte Carlo-based

algorithms such as TMC-Shapley are difficult to scale to larger

datasets [19], as the number of models to retrain and evaluate is

linear in the number of data points in D, which is still not feasible

for large datasets, where a single training run can take multiple

hours.

2.3 The Potential of KNN Models
Recent research details how to efficiently compute DSVs for KNN

classifiers [13]. This direction is promising for recommendation

scenarios as well, where KNNmodels have a long tradition, ranging

from classical collaborative filtering [23, 32, 33] to recent state-of-

the-art algorithms in session-based [6, 12, 25, 27], session-aware [20],

next-basket [5, 11, 21], and within-basket recommendation [3], to

applications for conversational recommendation [41]. However, ex-

isting approaches [13, 15] for efficiently computing DSVs for KNN

classifiers are not directly applicable to KNN-based recommender

1
Note that we base Algorithm 1 on the authors’ actual code from https://github.com/

amiratag/DataShapley, which slightly differs from the formulation in their paper.

systems. This is because they make several assumptions about the

utility function. First, they assume that the model quality metric

treats the contributions of the nearest neighbors independently,

which is not the case for ranking-based metrics. Second, the compu-

tational efficiency bounds in [13, 15] are derived for classification

tasks with a small number of class labels, which is not the case in

recommender systems, which have to rank millions of items.

Research question. This leads us to the main research question

of this paper: Can we efficiently compute Data Shapley values for
KNN-based recommenders on large sparse interaction datasets?

3 KMC-Shapley
Our goal is to design a general DSV estimation algorithm applicable

to a wide range of recommendation models from the KNN family.

In order to achieve this, we first define an abstract computational

model capturing the general structure of KNN algorithms on sparse

data in Section 3.1. Based on this, we design the KMC-Shapley

algorithm, a specialized variant of TMC-Shapley (Algorithm 1),

that skips expensive utility computations when the marginal con-

tribution is known to be zero. We discuss the characteristics of

KNN models that enable this in Section 3.2, and present the actual

algorithm in Section 3.3.

3.1 Abstract Computational Model for
Neighborhood-Based Recommendation

In the following, we discuss an abstract computational model that

allows us to compute data importance in a general manner for KNN

algorithms.

Sparse representation of interactions. Each set of interactions in
the training data is encoded as a sparse representation x𝑖 . Thereby,
the training data of observed interactions is turned into a retrieval

corpus D = {x𝑖 | 𝑖 ∈ 𝐸}, where 𝐸 denotes a use-case specific entity

of interest (e.g., the ratings of a user, the ratings of an item, browsing

sessions, shopping baskets, . . .).

Retrieval-based inference. KNN models can be viewed as a com-

bination of a retrieval function 𝑓𝑟𝑒𝑡 to query the retrieval corpusD
and a prediction function 𝑓𝑝𝑟𝑒𝑑 to generate recommendations based

on the retrieved representations. At inference time, KNN models

compute recommendations for a query x𝑞 in two stages:

(1) Retrieval – The 𝑘 nearest neighbors x𝛼1
, . . . , x𝛼𝑘 for the queried

representation x𝑞 are retrieved via 𝑓𝑟𝑒𝑡 (x𝑞,D, 𝑘), according to

a model-specific ranking function.

(2) Item scoring – The top items to recommend are computed via

the prediction function 𝑓𝑝𝑟𝑒𝑑 (x𝑞, {x𝛼1
, . . . , x𝛼𝐾 }), based on the

query representation x𝑞 and the retrieved neighbor representa-

tions x𝛼1
, . . . , x𝛼𝑘 .

Note that this model is instantiated differently for different KNN

algorithms. In classical item-based collaborative filtering [33], x𝑖
represents all the ratings given to an item, in session-based recom-

mendation such as VS-kNN [26], x𝑖 represents a weighted sequence
of clicks on items during a browsing session, and in next-basket

recommendation algorithms such as TIFU-kNN [11], x𝑖 consists of
a time-weighted, aggregated representation of a user’s shopping

history.

https://github.com/amiratag/DataShapley
https://github.com/amiratag/DataShapley

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Barrie Kersbergen, Olivier Sprangers, Bojan Karlaš, Maarten de Rijke, and Sebastian Schelter

Algorithm 2 KMC-Shapley algorithm.

1 function kmc-shapley(D,𝑉 , 𝑘,D
val

)

2 𝜙 = {𝜙1, . . . , 𝜙𝑛 } ← 0 // Initialize Data Shapley values

3 N← ∅ // Initialize neighbor index

4 for x𝑞 ∈ Dval
: // Populate index with neighbors

5 N𝑞 = { (x𝛼1 , 𝑠𝛼1), . . . , (x𝛼𝑀 , 𝑠𝛼𝑀) } ← 𝑓ret (x𝑞,D)
6 while not converged :

7 𝜋 ← random permutation of data points in D
8 parfor x𝑞 ∈ Dval

// Iterate over validation samples in parallel

9 Sort N𝑞 according to the positions in 𝜋

10 h← min-heap of capacity 𝑘 // Initialize min-heap

11 Initialize pre-aggregate 𝜎𝑞

12 𝑣prev ← 0 // Initialize previous utility

13 for (x𝛼𝑖 , 𝑠𝛼𝑖) ∈ N𝑞 :

14 if |h | < 𝑘

15 insert (x𝛼𝑖 , 𝑠𝛼𝑖) into h
16 Include x𝛼𝑖 into pre-aggregate 𝜎𝑞

17 else
18 (xℎ, 𝑠ℎ) ← data point and similarity of heap root

19 if 𝑠𝛼𝑖 > 𝑠ℎ
20 Remove xℎ from pre-aggregate 𝜎𝑞

21 Include x𝛼𝑖 into pre-aggregate 𝜎𝑞

22 update heap root of h with (x𝛼𝑖 , 𝑠𝛼𝑖)
23 if h changed // Set of k-nearest neighbors changed

24 𝑣 ← 𝑉𝑞 (𝑓pred (x𝑞, 𝜎𝑞)) // Utility with current neighbors

25 𝑗 ← position of x𝛼𝑖 in 𝜋

26 𝜙𝜋 𝑗 ← 𝜙𝜋 𝑗 + (𝑣 − 𝑣prev) // Update Shapley value

27 𝑣prev ← 𝑣 // Update previous utility

28

29 𝑡 ← number of permutations evaluated

30 𝜙 ← 1

𝑡
𝜙 // Normalise by number of iterations

31 return Data Shapley values 𝜙 = {𝜙1, . . . , 𝜙𝑛 }

3.2 Data and Model Characteristics in
Neighborhood-Based Recommendation

We discuss the data and model characteristics in neighborhood-

based recommendation on sparse data, which allow us to skip the

expensive utility computation in cases where we already know that

the marginal contribution is zero.

Sparse retrieval. KNN algorithms typically operate on sparse in-

teraction data between users and items. A common characteristic

of these datasets is that they contain a wide selection of items,

while each user only interacts with a tiny fraction of the available

items. For example, the median session length in click datasets

in e-commerce ranges from two to four clicks, even in scenarios

with more than a million distinct items [17], and shopping baskets

in purchase datasets contain less than ten items on average, even

though there are tens of thousands of distinct items available [11].

As a consequence, the resulting interaction data is extremely sparse.

To account for this, KNN algorithms use sparse representations for

the interaction histories and apply a sparse retriever 𝑓𝑟𝑒𝑡 with a

similarity function 𝑠𝑖𝑚(x𝑞, x𝑖) to rank a representation x𝑖 in the

retrieval corpus with respect to a query x𝑞 . These retrievers typ-
ically ignore pairs (x𝑞, x𝑖) of representations with no overlap in

item interactions, meaning that x𝑖 will never be in the neighbor set

of x𝑞 in that case.

Locality. The prediction function 𝑓𝑝𝑟𝑒𝑑 only uses the 𝑘 representa-

tions with the largest similarities returned by 𝑓𝑟𝑒𝑡 . Let Γ𝑞 (𝑆) denote
the 𝑘-th largest similarity score between the validation sample x𝑞
and the representations from a set 𝑆 . If 𝑠𝑖𝑚(x𝑞, x𝑖) < Γ𝑞 (𝑆), then
adding x𝑖 to 𝑆 has no impact on the utility for x𝑞 . The sparsity of

the interaction data and the locality property of KNN models allow

us to work with the much smaller set of neighbors of each valida-

tion sample instead of having to process all data points from the

training data in each iteration. Apart from being able to skip certain

utility computations, we can further accelerate the algorithm based

on the following characteristics.

Additivity of utilities. Analogous to classification and regres-

sion scenarios, the utility 𝑉 of a model with respect to a vali-

dation dataset D𝑣𝑎𝑙 in recommendation scenarios is computed

by averaging the utilities for the individual validation samples

x𝑞 ∈ D𝑣𝑎𝑙 for common metrics like NDCG, MRR, Recall, etc.

This additional property of 𝑉 leads to 𝑉 (𝑆𝑖𝜋 ∪ {x𝑖 }) − 𝑉 (𝑆𝑖𝜋) =
1

|D𝑣𝑎𝑙 |
∑
x𝑞 ∈D𝑣𝑎𝑙 𝑉𝑞 (𝑆

𝑖
𝜋 ∪ {x𝑖 }) −𝑉𝑞 (𝑆𝑖𝜋), where 𝑉𝑞 computes the

utility with respect to the validation sample x𝑞 . This enables a
mapreduce-like parallelisation pattern, where we process each in-

dividual validation sample x𝑞 ∈ Dval
in parallel and aggregate

the resulting marginal contributions per training data point subse-

quently.

Linear aggregations at inference time. The prediction function

𝑓𝑝𝑟𝑒𝑑 in many KNNmodels first conducts a linear aggregation of the

retrieved representations (e.g., a weighted sum of their sparse vector

representations) and subsequently selects the items to recommend

via a non-linear operation. Since the MC procedure requires us to

sequentially scan the permutation of training points and investigate

the impact of an additional sample (Lines 10–11 in Algorithm 1),

it will repeatedly invoke 𝑓𝑝𝑟𝑒𝑑 with one new neighbor and 𝑘 − 1
neighbors that have been seen in the previous step. This makes

it possible to reuse the aggregation result of the 𝑘 − 1 neighbors
from the previous step. In order to achieve this, we make the KNN

model maintain an aggregate 𝜎𝑞 of the current top-𝑘 neigbor set

and directly compute predictions from this via 𝑓𝑝𝑟𝑒𝑑 (x𝑞, 𝜎𝑞), which
allows us to avoid repeating redundant aggregations.

3.3 KMC-Shapley Algorithm
Based on the outlined characteristics, we present KMC-Shapley
in Algorithm 2. This variant of TMC-Shapley is tailored for KNN

models and runs several orders of magnitude faster (as we experi-

mentally show in Section 4.1.1).

KMC-Shapley starts with retrieving and indexing the top-𝑀

neighbors {x𝛼1
, . . . , x𝛼𝑀 } of each validation sample x𝑞 in Lines 4–

5, where 𝑠𝛼𝑖 denotes the similarity 𝑠𝑖𝑚(x𝑞, x𝛼𝑖). The parameter

𝑀 denotes the maximum number of neighbors to consider per

validation sample and is typically set to a high number. This pa-

rameter is inspired by recent statistics research which shows that

high-cardinality subsets (with more than 100 elements) produce

unreliable estimates of the marginal contribution in DSV computa-

tions [19]. Analogous to TMC-Shapley, our algorithm runs several

MC iterations and generates a random permutation 𝜋 of the data

points in D in each iteration (Line 7). In contrast to TMC-Shapley,

KMC-Shapley does not iterate over the data points in D, but over

each validation sample x𝑞 in parallel (Line 8).

Scalable Data Debugging for Neighborhood-based Recommendation with Data Shapley Values RecSys ’25, September 22–26, 2025, Prague, Czech Republic

5V(fpred(,fret()))
5 3V(fpred(,fret()))
5 3 7V(fpred(,fret()))
5 3 7 4V(fpred(,fret()))
5 3 7 4 8V(fpred(,fret()))
5 3 7 4 8 1V(fpred(,fret()))
5 3 7 4 8 1 2V(fpred(,fret(

}))
7 }))

3

3

27)))
5 3 7 4 8 1 2V(fpred(,fret()))6

}))

5 3 7 4 8 1 2 6

Data permutation π with similarity to xq

0.3 0.5 0.2 0.4 0000

q

Validation sample xq

q

q

q

q

q

q

q

q

V(fpred(,{q

V(fpred(,{q

V(fpred(,{q

5Skipped

Skipped

Skipped

Skipped

SkippedK
M

C
-S

ha
pl

ey

TM
C

-S
ha

pl
ey change in top-2  

neighbors and utility

change in top-2 
neighbors and  
utility

change in top-2 
neighbors and utility

Figure 2: Comparison of TMC-Shapley to KMC-Shapley for a
toy examplewith eight data points, a single validation sample
x𝑞 and a model with 𝑘 = 2. KMC-Shapley is able to skip many
redundant computations, since only changes in the top-2
neighbor set of x𝑞 lead to changes in utility. TMC-Shapley
(left side) processes eight data subsets for the permutation 𝜋

and evaluates the utility function𝑉 each time. KMC-Shapley
(on the right side) takes the similarities of the data points to
x𝑞 into account and directly maintains the top-2 neighbor
set of x𝑞 (highlighted in blue). This allows KMC-Shapley to
skip many redundant computations, since only changes in
the top-2 neighbor set of x𝑞 lead to changes in utility.

For each validation sample x𝑞 , our algorithm needs to consider

its indexed neighbors only, according to their order in the permuta-

tion 𝜋 (Line 9), as only the addition of new neighbors can produce

a non-zero marginal contribution for x𝑞 . Our algorithm iterates

through these neighbors (Line 13) and maintains the set of top-𝑘

neighbors in a binary heap (Lines 15 and 22). It simultaneously

maintains the corresponding pre-aggregate 𝜎𝑞 of the top-𝑘 neig-

bor set under changes (Lines 16, 20 and 21). The computation of

the marginal contribution of adding a new neighbor x𝛼 is only

necessary (e.g., potentially non-zero) if the top-𝑘 neighbor set for

x𝑞 changes. In such cases, the change in utility is computed and

used to update the DSV estimate corresponding to x𝛼 (Lines 23–27).

Finally, the Data Shapley values are normalized by the number of

iterations conducted and returned (Lines 29–31).

Complexity analysis. Let 𝑃 denote the number of permutations

considered. Algorithm 2 runs 𝑃 iterations over |D
val
| validation

samples and has to process at most𝑀 neighbors per validation sam-

ple. Sorting these according to their positions in the permutation

𝜋 can be done in 𝑂 (𝑀 log𝑀). For each neighbor, there is a cost of

log𝑘 for a potential update of the heap and a constant cost of a sin-

gle summation and subtraction for maintaining the pre-aggregate

𝜎𝑞 . Since 𝑀 ≫ 𝑘 , this results in an overall time complexity of

𝑂 (𝑃 |D
val
|𝑀 log𝑀). These optimizations make KMC-Shapley sig-

nificantly more scalable than the baseline, even for large validation

sets and neighborhood sizes.

Toy example. We visualize the advantages of KMC-Shapley over

TMC-Shapley on a toy example in Figure 2. For that, we show

how both algorithms process a permutation 𝜋 of a dataset set D
with eight elements x1, . . . , x8 for a KNN model with 𝑘 = 2 and

a single validation sample x𝑞 . The operations shown correspond

to Lines 4–10 in Algorithm 1 for TMC-Shapley and to Lines 9–24

in Algorithm 2 for KMC-Shapley. This setup highlights how the

sparsity and locality properties of kNN models reduce computation

overhead, even in simple cases. On the left side, TMC-Shapley

enumerates eight subsets of D according to the permutation 𝜋 and

evaluates the utility𝑉 of the resulting predictions for the validation

sample x𝑞 each time. KMC-Shapley (on the right side) takes the

similarities of the data points in 𝐷 to the validation sample x𝑞
into account and directly maintains the top-2 neighbor set of x𝑞
(highlighted in blue). This allows our algorithm to skip redundant

computations, since only changes in the top-2 neighbor set of x𝑞 will
lead to changes in utility. Concretely, KMC-Shapley skips the utility

computations for adding the data points x5, x4, x1 and x6, which
have a similarity of zero to the validation sample x𝑞 . Moreover,

KMC-Shapley can skip the utility computation for adding x8, since
the similarity of x8 to x𝑞 is too small to change the top-2 neighbor

set. Overall, we see that KMC-Shapley can significantly reduce the

number of required utility evaluations.

4 Evaluation
We evaluate the efficiency and scalability of KMC-Shapley and

experimentally validate that it identifies impactful data points. We

focus on two recommendation tasks in e-commerce, where KNN

models provide competitive performance [21, 26]: Session-based

recommendation [17, 26], where the goal is to predict the next item

that a user will click on, and next-basket recommendation [3, 11,

21], where the goal is to predict the items in the next shopping

basket purchased by a user. We run KNN-based recommenders in

production for these tasks [16, 17, 39], which allows us to present

experiments with real-world data and systems in this section.

4.1 Efficiency & Scalability
4.1.1 Efficiency. The goal of our first experiment is to showcase

that our proposed optimizations (Sections 3.2 & 3.3) for KMC-

Shapley drastically reduce the runtime compared to TMC-Shapley.

Experimental setup. We run this experiment on aWindows 10ma-

chine with an Intel i9-10900KF CPU.We use a sample of a public ses-

sion dataset with 250,000 clicks as training data and 14,058 clicks as

validation data, compute DSVs for session-based recommendation

with a variant of the VS-kNN recommendation algorithm [17, 26],

and repeat each run five times for 𝑘 ∈ {50, 100, 250, 500}. We mea-

sure the mean runtime for a single MC iteration over all training

data points with different algorithm variants.

We design this experiment as an ablation study for the pro-

posed optimisations from originating from Section 3.3, based on the

characteristics outlined in Section 3.2. For that, we introduce our

proposed optimisations step by step to transform TMC-Shapley into

KMC-Shapley. The baseline tmc denotes a Rust implementation of

the vanilla TMC-Shapley algorithm (Algorithm 1), which retrains

the recommendation model each time. Next, +indexed denotes a
variant that does not retrain the KNN-SR model, but reuses the

indexed neighbors per validation sample instead; the +top-k vari-

ant additionally maintains the top-𝑘 neighbor set in a binary heap

and only computes marginal contributions once this set changes;

the +pre-agg variant additionally maintains a pre-aggregate for

accelerating inference and the final optimisation +parallelism
parallelises the computation with eight threads, and corresponds

to the fully optimised KMC-Shapley implementation.

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Barrie Kersbergen, Olivier Sprangers, Bojan Karlaš, Maarten de Rijke, and Sebastian Schelter

2 4 6 8
number of cores

2.5

5.0

7.5

sp
ee

du
p

k=50

k=100

k=250

k=500

50 100 250 500

k

1

10

100

1000

ru
nt

im
e

[s
]

20
1x

16
1x

13
1x

12
0x

40
5x 23
6x

14
9x

12
5x

63
3x

41
5x

27
3x

24
1x

41
05

x

26
98

x

17
09

x

13
83

x

tmc

+indexed

+top-k

+pre-agg

+parallel

(a) Efficiency and scalability of KMC-Shapley: its

runtime scales linearly with the number of cores

(top), and each optimization reduces the runtime

(bottom).

0 5 10 15 20 25
Fraction of data removed (%)

−0.06

−0.04

−0.02

0.00

0.02

D
iff

er
en

ce
in

M
R

R
@

20

bol-literature

DSV

LOO

Random

Heuristic

0 5 10 15 20 25
Fraction of data removed (%)

bol-babycare

DSV

LOO

Random

Heuristic

0 5 10 15 20 25
Fraction of data removed (%)

bol-woodentoys

DSV

LOO

Random

Heuristic

0 5 10 15 20 25
Fraction of data removed (%)

nowplaying

DSV

LOO

Random

Heuristic

0 5 10 15 20 25
Fraction of data removed (%)

instacart

DSV

LOO

Random

Heuristic

0 5 10 15 20 25
Fraction of data removed (%)

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

D
iff

er
en

ce
in

M
R

R
@

20

DSV

LOO

Random

Heuristic

0 5 10 15 20 25
Fraction of data removed (%)

DSV

LOO

Random

Heuristic

0 5 10 15 20 25
Fraction of data removed (%)

DSV

LOO

Random

Heuristic

0 5 10 15 20 25
Fraction of data removed (%)

DSV

LOO

Random

Heuristic

0 5 10 15 20 25
Fraction of data removed (%)

DSV

LOO

Random

Heuristic

(b) Impact of removing themost important data points (top row) and data points with negative importance

scores (bottom row) from a session-based recommender system across datasets. Data identified by the

Data Shapley value (DSV) has stronger impact than data identified by leave-one-out error (LOO), random

removal, or session length as a simple heuristic.

Figure 3: Evaluation of KMC-Shapley for session-based recommendation: our algorithm is efficient and scales linearly with the
number of cores (left); data identified by the Data Shapley value has the strongest impact on model performance (right).

Results and discussion. We plot the resulting mean runtimes (and

the speedup over the tmc baseline) on a logarithmic scale in the bot-

tom of Figure 3a. We observe that all our performance optimisations

are beneficial, as each optimisation further reduces the runtime. In

this experiment, KMC-Shapley is three orders of magnitude faster

than the vanilla TMC-Shapley implementation which repeatedly

retrains the model. As expected, the largest runtime reduction origi-

nates from reusing the neighbor sets and avoiding model retraining

in the +indexed variant (which exploits the “sparse retrieval” and

“locality” characteristics outlined in Section 3.2). In this experiment,

we find that KMC-Shapley can conduct a single iteration for all

training data points in a second or less for all values of 𝑘 . The

results confirm that it is indeed possible to design customizsed,

highly accelerated variants of the Data Shapley value computation

for nearest neighbor models on sparse data.

4.1.2 Scalability. The goal of the next experiment is to show that

our implementation benefits from additional computational re-

sources, such as CPU cores.

Experimental setup. We experiment with a session-based rec-

ommender using a variant of the VS-kNN algorithm [17, 26] on

a large sample of 10,431,353 clicks in 1,668,295 sessions from Bol.

We run KMC-Shapley on this data with a validation set containing

250,000 clicks in 40,023 sessions, vary the number of neighbors 𝑘 ,

and increase the number of cores from one to eight. We execute

this experiment on a machine with a Mac M1 Pro, repeat each run

six times, and report the speedup over the single-threaded baseline.

Results and discussion. We plot the resulting speedups on the

top of Figure 3a. We observe that the runtime scales linearly with

the number of available cores, which is expected due to the map-

reduce-like computational pattern in KMC-Shapley (Section 3.2).

We observe diminishing returns for smaller values of 𝑘 , which we

attribute to the fact that the algorithm is less dominated by the

computational efforts for inference in these cases.

Even on this large dataset of over 10 million clicks, a single KMC

iteration with eight cores only takes 136 seconds on average for all

training data points.

4.2 Impact of Data Removal
Next, we evaluate how well KMC-Shapley identifies impactful data

points for interaction data. For that, we adopt a common data

removal experiment [8, 15, 19] to our recommendation setup. In

this experiment, data points are removed from the training data

according to a given order (e.g., sorted ascendingly or descendingly

with respect to their importances), and the prediction quality of a

model trained on the remaining data is repeatedly evaluated on a

held-out test set. The rate at which the prediction quality changes

indicates how impactful the chosen removal order is.

Experimental setup. We conduct this data removal experiment

for session-based recommendation [6, 26]. Concretely, we use a

variant of the VS-kNN recommendation algorithm [17, 26] with

hyperparameters 𝑘 = 50 and 𝑀 = 500. We experiment with sam-

ples from two public datasets (nowplaying, instacart) and three

proprietary click datasets (bol-literature, bol-babycare, bol-

woodentoys) with samples of up to 1.7 million clicks from different

product categories on Bol. We prepare the datasets as follows: we

conduct a temporal split of the sessions into training sessions and

held-out sessions, and we randomly split the held-out sessions into

50% validation and 50% test data. We make sure that we only re-

tain sessions with items seen in the training data (e.g., we ignore

cold-start items for which no clicks have been seen yet). Table 1

summarises the statistics of the resulting datasets.

Note that it is crucial to choose a large enough validation set to

avoid a high variance in the DSV scores; this can be determined up-

front via preliminary experiments with differently sized validation

sets and different random seeds.

Scalable Data Debugging for Neighborhood-based Recommendation with Data Shapley Values RecSys ’25, September 22–26, 2025, Prague, Czech Republic

foldable laundry basket,
advertised as baby bath

dangerous for children
according to reviews

unidentifiable
product

pixelated
image

pixelated
image

pixelated
image

bad
reviews

pixelated
image

bad
reviews

… … … …
minimum age
of 4 years

minimum age
of 8 years

minimum age
of 3 years

minimum age
of 1 year

minimum age
of 2 years

dangerous for children
according to reviews

Session containing  
dangerous products

Session containing  
products with  
low-quality metadata

Session containing  
83 clicks on incon- 
sistent products

Figure 4: Examples of sessions with negative importance scores in Bol’s click data (each box represents a single session consisting
of a sequence of clicks on items, arrows show the order of clicks). We encounter sessions containing dangerous products (e.g.,
a foldable laundry basket incorrectly advertised as baby bath), sessions with metadata quality issues (e.g., pixelated and
unidentifiable images) as well as sessions with inconsistent products (wooden toys for different age ranges).

Purchase history  
with unreasonable 
number of PS5 con- 
trollers and activity 
gap

… … …
104x 47x

2
da

ys

2
da

ys

23
1

da
ys

unreasonably high
number of items

…

2
da

ys

26
 d

ay
s

…

2
da

ys …
Purchase history  
with unreasonable 
number of karaoke 
speakers and  
category switch

23x unreasonably high
number of items

no activity for
several months

6x32xunreasonably high
number of items

completely unrelated category
(interdental brushes)

Figure 5: Examples of purchase histories with negative importance scores from Bol (boxes indicate items bought together in a
shopping cart, arrows point to the next shopping cart). The histories contain electronics items bought in unreasonably high
numbers (e.g., over a hundred PlayStation controllers), an activity gap of more than half a year, and switch to unrelated product
categories (coffee, dental products) at some point.

Table 1: Datasets for session-based recommendation.
#clicks

Dataset #sessions #items train valid test

bol-literature proprietary 393,655 50,202 1,704,661 168,109 166,289

bol-babycare proprietary 29,324 3,161 127,088 13,351 13,395

bol-woodentoys proprietary 98,420 8,937 437,329 44,427 44,825

nowplaying public 97,922 196,531 489,367 58,277 57,616

instacart public 21,068 18,661 124,376 60,104 59,363

We compute Data Shapley values via KMC-Shapley and LOO errors

with respect to the MRR for the first 20 recommended items (re-

ferred to as MRR@20). We evaluate the impact of removing highly

important sessions with positive DSVs in descending order. We

repeat this analogously for sessions with positive leave-one-out er-

rors and also include two baselines, one which simply removes data

points at random, and another heuristic baseline which considers

the number of clicks contained in a session (based on the assump-

tion that very long sessions are likely to originate from bots and

crawlers). We replicate this experiment for removing low-scored

data, where we remove the sessions with negative DSVs and LOOs

in ascending order instead.

Results and discussion. Figure 3b shows the absolute differences
in MRR@20 on the held-out test data when removing up to 25%

of the training sessions. Each experiment is repeated three times,

and we report mean values as solid lines and standard deviations as

shaded areas. When removing highly important data, we observe

clear differences across the methods. Removing sessions ranked by

Data Shapley values (DSV) causes the steepest decline in MRR@20,

up to 0.06, demonstrating that KMC-Shapley more effectively iden-

tifies high-impact training data than LOO, random removal or re-

moval based on the heuristic. When removing sessions with nega-

tive importance scores, DSV again yields the largest improvements

across datasets, confirming that these sessions often represent harm-

ful or noisy data. LOO-based removal improves performance less

consistently, and removal based on random choice shows only mi-

nor effects in either direction. Removing up to 5% of the longest

sessions slightly outperforms random removal, but performance

degrades beyond that. This highlights the limited effectiveness of

rule-based heuristics compared to learned data importance scores.

We now evaluate scalability on real-world datasets. For this experi-

ment, we use a Mac M3 Pro with 6 cores, on which the DSV com-

putation requires between 1,420 to 2,481 iterations to converge and

the time per iteration varies from 0.7 seconds on bol-babycare to

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Barrie Kersbergen, Olivier Sprangers, Bojan Karlaš, Maarten de Rijke, and Sebastian Schelter

21.4s on instacart. Even for the largeset dataset bol-literature

with more than two million clicks, the computation finishes in un-

der 10 hours. We run another experiment with a dataset of over

two million product purchases and a next-basket recommendation

model [11] from our e-commerce platform. The results observed

are in line with the results from the previous experiment on session-

based recommendation. Due to lack of space, we refer to our code

repository for details on the experimental setup and results.

5 Applications
We discuss some applications of data importance at Bol.

Identifying outliers and corrupted data. The main purpose of

data importance is to help us find corrupted and harmful interac-

tion data in the production recommender system [17] of Bol. This

session-based recommender serves the “others also viewed” rec-

ommendations on the product pages. Apart from improving our

recommender systems, uncovering data issues is also important

for other teams, e.g., those responsible for product quality and risk

issues on the platform.

In order to showcase this use case, we draw a large sample of his-

torical click data from the babycare, wooden toys, and wooden pen-

cils categories, and compute DSVs with MRR@20 as the target met-

ric of a variant of our VS-kNN recommendation algorithm [17, 26].

We find that the lowest-scored sessions contain inconsistencies,

problematic products, and corrupted data. We show three exam-

ple sessions taken from the ten lowest-scored sessions found in

these data samples in Figure 4. All of these sessions are harmful

to the recommender system (i.e., including them in the training

data negatively impacts prediction quality) and suffer from data

issues. The top-most session originates from a user exploring baby

bath products and for example contains a foldable laundry basket,

which has been incorrectly advertised as a baby bath by its seller,

and which according to its reviews is actually dangerous to use for

bathing children. The remaining two sessions shown in the figure

suffer from different issues. The second session contains pencil

products, many of which suffer from quality issues in their meta-

data, such as pixelated and unidentifiable images. The third session

contains a massive number of 83 clicks on wooden toys, and the

toys target highly variable age ranges (one-year-olds to eight-year-

olds), making this session unsuitable as a basis for recommendation.

These examples showcase that DSVs identify low-quality interac-

tion data with issues that are hard to anticipate upfront. We repeat

this analysis for a large sample of purchase histories from Bol and a

next-basket recommendation model [11] (a variant of which we run

in production as well), leveraging NDCG@20 as the target metric.

We again find that the lowest-scored purchase histories contain

data that is not helpful for our recommender systems, and refer

to Figure 5 for examples. The histories contain electronics items

bought in unreasonable numbers (e.g., over a hundred PlaySta-

tion controllers), switch to completely unrelated product categories

(coffee, dental products) at some point, and are therefore clearly

uninformative for a recommender system. We attribute such pur-

chase histories to commercial accounts, which buy large numbers

of products for several thousands of Euros as a response to price

promotions, probably intended for reselling.

…

40
 d

ay
s

24
 d

ay
s

…

13
1

da
ys

12x 12x

…
12x

… …

…

Figure 6: Examples of high-value sessions and purchase his-
tories with consistent selections and high turn-over items.

We also investigate the sessions and purchase histories with the

highest DSVs from this experiment and plot examples in Figure 6.

We find that the DSVs identify high-value sessions with consistent

product selections in click data, and high-value shopping baskets

with high turnover items (baby formula, toilet paper) in purchase

history data.

Increasing the sustainability of recommendations via data
pruning. A major goal of Bol is to make sustainable shopping eas-

ier for customers. We present an experimental application of DSVs,

which contributes to this mission. The aim here is to increase the

number of sustainable items in the predictions of our session-based

recommender, without compromising the prediction quality. We

choose a data-centric approach that prunes the underlying data in

an effort to remove the histories containing unsustainable products.

This allows us to maintain the prediction quality of our recom-

mender system by letting the real histories with a higher number of

sustainable products serve as a basis for future recommendations.

To modify the behavior of our recommender system through in-

terventions on the training data, we need a utility function able to

measure the desired behavior. To this end, we augment the product

metadata with a binary flag that indicates whether an item was pro-

duced in a sustainable manner. Furthermore, we modify the MRR

metric to include a sustainability term that expresses the number

of sustainable products in a given recommendation. Specifically,

we define a utility function, which we call SustainableMRR@t as
0.8 · 𝑀𝑅𝑅@𝑡 + 0.2 · 𝑠𝑡 . This utility combines the MRR@t with a

sustainability coverage term
𝑠
𝑡 , where 𝑠 denotes the number of

sustainable items among the 𝑡 recommended items.

For this internal experiment, we compute Data Shapley values

and leave-one-out errors for our recommender system with Sus-

tainableMRR@21 as a utility on click datasets from the baby care

and wooden toys categories on Bol, which contain large numbers

of sustainable products. Next, we prune the training data based

on the computed DSVs (by removing the 5% lowest scored data

points) and evaluate the recommendations on held-out test data.

We observe that removing this data significantly increases the Sus-

tainableMRR@21 metric across all cases and that both the MRR@21

as well as the sustainability coverage increase as a result of the

pruning. Pruning based on LOO leads to unreliable results in our

experiment since we observe a small increase for the wooden toys

Scalable Data Debugging for Neighborhood-based Recommendation with Data Shapley Values RecSys ’25, September 22–26, 2025, Prague, Czech Republic

category, but a decrease in SustainableMRR@21 for recommenda-

tions of baby care items. In summary, these results confirm that we

can leverage DSVs with custom-designed utility functions for the

data-centric optimization of existing recommendation models.

6 Related Work
KNN-based recommender systems. KNNmodels have a long tra-

dition in recommender systems, ranging from classical collaborative

filtering [23, 32, 33] to recent state-of-the-art algorithms in session-

based [6, 12, 25, 27], session-aware [20], next-basket [5, 11, 21], and

within-basket recommendation [3], to applications for conversa-

tional recommendation [41].

Error detection for ML data. Detecting errors in data is a core re-

search direction in data management [2, 22], and several approaches

tailored to ML applications have been proposed. Google TFX [30]

and Deequ [34, 35] infer integrity constraints for ML data based

on data profiling, and follow-up approaches learn to validate ML

data from historically observed data partitions [31, 36], few-shot

examples [10] or via self-supervised learning [24].

Novelty. To the best of our knowledge, we are the first to ex-

plore data importance for KNN-based recommenders. The only

other application of the DSV in recommender systems (that we are

aware of) is the selection of data points for pruning [42], where it

successfully uncovers errors introduced by synthetic random noise.

7 Conclusion
We have presented a scalable algorithm for debugging the interac-

tion data of KNN-based recommender systems via the Data Shapley

value, and showcased that it identifies impactful data points in

datasets with millions of interactions.

Limitations. A limitation of our approach is that the proposed

optimizations only benefit nearest neighbor models on sparse in-

teraction data, but are not directly applicable to neural models.

This is due to the fact that several of the outlined properties from

Section 3.2 do not hold for these models, as they operate on dense

representations and lack localised influence. Moreover, an open

challenge is how to efficiently maintain data importance scores

incrementally as new interactions arrive. This is especially impor-

tant for growing real-world datasets, where one would like to avoid

having to rerun the DSV computation from scratch for data updates.

Future work. In the future, we plan to include additional recom-

mendation models [3, 5, 7] and data importance algorithms [19, 40]

in our implementation. Furthermore, we will explore how well

the importance scores from KNN models serve as proxies for data

importance in computationally expensive neural models.

Acknowledgments
This research was supported by Ahold Delhaize, through AIRLab

Amsterdam, the Dutch Research Council (NWO), under project

numbers 024.004.022, NWA.1389.20.183, and KICH3.LTP.20.006,

and the European Union’s Horizon Europe program under grant

agreement No 101070212. All content represents the opinion of

the authors, which is not necessarily shared or endorsed by their

respective employers and/or sponsors.

References
[1] 2023. Proactively ScreeningMachine Learning Pipelines with ArgusEyes. Schelter,

Sebastian and Grafberger, Stefan and Guha, Shubha and Karlas, Bojan and Zhang,
Ce (2023).

[2] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F Ilyas,

Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. De-

tecting Data Errors: Where Are We and What Needs to Be Done? VLDB (2016).

[3] Mozhdeh Ariannezhad, Ming Li, Sebastian Schelter, and Maarten de Rijke. 2023.

A Personalized Neighborhood-based Model for Within-Basket Recommendation

in Grocery Shopping. WSDM (2023).

[4] Buzzfeed. 2019. “Amazon’s Choice” Does Not Necessarily Mean A Product Is

Good. https://www.buzzfeednews.com/article/nicolenguyen/amazons-choice-

bad-products

[5] Guglielmo Faggioli, Mirko Polato, and Fabio Aiolli. 2020. Recency Aware Collab-

orative Filtering for Next Basket Recommendation. UMAP (2020).

[6] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are

We Really Making Much Progress? A Worrying Analysis of Recent Neural Rec-

ommendation Approaches. RecSys (2019).
[7] Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff.

2019. Sequence and Time Aware Neighborhood for Session-based Recommenda-

tions: Stan. SIGIR (2019).

[8] Amirata Ghorbani and James Zou. 2019. Data Shapley: Equitable Valuation of

Data for Machine Learning. ICML (2019).

[9] Zayd Hammoudeh and Daniel Lowd. 2024. Training Data Influence Analysis and

Estimation: A Survey. Machine Learning (2024).

[10] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas. 2019.

Holodetect: Few-shot Learning for Error Detection. SIGMOD (2019).

[11] Haoji Hu, Xiangnan He, Jinyang Gao, and Zhi-Li Zhang. 2020. Modeling Per-

sonalized Item Frequency Information for Next-basket Recommendation. SIGIR
(2020).

[12] Dietmar Jannach and Malte Ludewig. 2017. When Recurrent Neural Networks

Meet the Neighborhood for Session-based Recommendation. RecSys (2017).
[13] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nezihe Merve Gurel, Bo

Li, Ce Zhang, Costas J Spanos, and Dawn Song. 2019. Efficient Task-specific Data

Valuation for Nearest Neighbor Algorithms. VLDB (2019).

[14] Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura, Ce

Zhang, Bo Li, and Dawn Song. 2021. Scalability vs. Utility: Do We Have to

Sacrifice One for the Other in Data Importance Quantification? CVPR (2021).

[15] Bojan Karlaš, David Dao, Matteo Interlandi, Sebastian Schelter, Wentao Wu,

and Ce Zhang. 2023. Data Debugging with Shapley Importance over Machine

Learning Pipelines. ICLR (2023).

[16] Barrie Kersbergen and Sebastian Schelter. 2021. Learnings from a retail recom-

mendation system on billions of interactions at bol.com. ICDE (2021).

[17] Barrie Kersbergen, Olivier Sprangers, and Sebastian Schelter. 2022. Serenade-

low-latency session-based recommendation in e-commerce at scale. SIGMOD
(2022).

[18] Harold William Kuhn and Albert William Tucker. 1953. Contributions to the
Theory of Games. Number 28. Princeton University Press.

[19] Yongchan Kwon and James Zou. 2022. Beta Shapley: A Unified and Noise-Reduced

Data Valuation Framework for Machine Learning. AISTATS (2022).
[20] Sara Latifi, Noemi Mauro, and Dietmar Jannach. 2021. Session-aware Recom-

mendation: A Surprising Quest for the State-of-the-art. Information Sciences
(2021).

[21] Ming Li, Sami Jullien, Mozhdeh Ariannezhad, and Maarten de Rijke. 2023. A

Next Basket Recommendation Reality Check. ACM TOIS (2023).
[22] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021. CleanML:

A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks.

ICDE (2021).

[23] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com Recommenda-

tions: Item-to-item Collaborative Filtering. IEEE Internet Computing (2003).

[24] Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas. 2022. Picket: Guarding

against Corrupted Data in Tabular Data during Learning and Inference. VLDB
Journal (2022).

[25] Malte Ludewig and Dietmar Jannach. 2018. Evaluation of Session-based Recom-

mendation Algorithms. UMAP (2018).

[26] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2019. Per-

formance Comparison of Neural and Non-neural Approaches to Session-based

Recommendation. RecSys (2019).
[27] Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2021. Empirical

Analysis of Session-based Recommendation Algorithms. UMAP (2021).

[28] Channel 4 News. 2017. Potentially Deadly Bomb Ingredients are ‘Frequently

Bought Together’ on Amazon. https://www.channel4.com/news/potentially-

deadly-bomb-ingredients-on-amazon

[29] Vice News. 2023. AI-Generated Books of Nonsense Are All Over Amazon’s Best-

seller Lists. https://www.vice.com/en/article/ai-generated-books-of-nonsense-

are-all-over-amazons-bestseller-lists/

[30] Neoklis Polyzotis, Martin Zinkevich, Sudip Roy, Eric Breck, and Steven Whang.

2019. Data Validation for Machine Learning. MLSys (2019).

https://www.buzzfeednews.com/article/nicolenguyen/amazons-choice-bad-products
https://www.buzzfeednews.com/article/nicolenguyen/amazons-choice-bad-products
https://www.channel4.com/news/potentially-deadly-bomb-ingredients-on-amazon
https://www.channel4.com/news/potentially-deadly-bomb-ingredients-on-amazon
https://www.vice.com/en/article/ai-generated-books-of-nonsense-are-all-over-amazons-bestseller-lists/
https://www.vice.com/en/article/ai-generated-books-of-nonsense-are-all-over-amazons-bestseller-lists/

RecSys ’25, September 22–26, 2025, Prague, Czech Republic Barrie Kersbergen, Olivier Sprangers, Bojan Karlaš, Maarten de Rijke, and Sebastian Schelter

[31] Sergey Redyuk, Zoi Kaoudi, Volker Markl, and Sebastian Schelter. 2021. Automat-

ing Data Quality Validation for Dynamic Data Ingestion. EDBT (2021).

[32] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John

Riedl. 1994. Grouplens: An Open Architecture for Collaborative Filtering of

Netnews. CSCW (1994).

[33] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based

Collaborative Filtering Recommendation Algorithms. WWW (2001).

[34] Sebastian Schelter, Stefan Grafberger, Philipp Schmidt, Tammo Rukat, Mario

Kiessling, Andrey Taptunov, Felix Biessmann, and Dustin Lange. 2019. Differen-

tial Data Quality Verification on Partitioned Data. ICDE (2019).

[35] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Biess-

mann, and Andreas Grafberger. 2018. Automating Large-Scale Data Qquality

Verification. VLDB (2018).

[36] Shreya Shankar, Labib Fawaz, Karl Gyllstrom, and Aditya G. Parameswaran. 2023.

Moving Fast with Broken Data. CIKM (2023).

[37] Ars Technica. 2024. Lazy Use of AI Leads to Amazon Products Called “I Cannot

Fulfill that Request”. https://arstechnica.com/ai/2024/01/lazy-use-of-ai-leads-

to-amazon-products-called-i-cannot-fulfill-that-request/

[38] New York Times. 2022. Lawmakers Press Amazon on Sales of Chemical Used

in Suicides. https://www.nytimes.com/2022/02/04/technology/amazon-suicide-

poison-preservative.html

[39] Maria Vechtomova et al. 2023. Databricks AI Summit: Streamlining API Deploy

ML Models Across Multiple Brands: Ahold Delhaize’s Experience on Serverless.

Retrieved July 5, 2024 from https://www.youtube.com/watch?v=GSJFyoBiCXk

[40] Jiachen T. Wang and Ruoxi Jia. 2023. Data Banzhaf: A Robust Data Valuation

Framework for Machine Learning. AISTATS (2023).
[41] Zhouhang Xie, Junda Wu, Hyunsik Jeon, Zhankui He, Harald Steck, Rahul Jha,

Dawen Liang, Nathan Kallus, and Julian McAuley. 2024. Neighborhood-Based

Collaborative Filtering for Conversational Recommendation. RecSys (2024).
[42] Yansen Zhang, Xiaokun Zhang, Ziqiang Cui, and Chen Ma. 2025. Shapley Value-

driven Data Pruning for Recommender Systems. KDD (2025).

https://arstechnica.com/ai/2024/01/lazy-use-of-ai-leads-to-amazon-products-called-i-cannot-fulfill-that-request/
https://arstechnica.com/ai/2024/01/lazy-use-of-ai-leads-to-amazon-products-called-i-cannot-fulfill-that-request/
https://www.nytimes.com/2022/02/04/technology/amazon-suicide-poison-preservative.html
https://www.nytimes.com/2022/02/04/technology/amazon-suicide-poison-preservative.html
https://www.youtube.com/watch?v=GSJFyoBiCXk

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Data Importance
	2.2 Scalability Issues
	2.3 The Potential of KNN Models

	3 KMC-Shapley
	3.1 Abstract Computational Model for Neighborhood-Based Recommendation
	3.2 Data and Model Characteristics in Neighborhood-Based Recommendation
	3.3 KMC-Shapley Algorithm

	4 Evaluation
	4.1 Efficiency & Scalability
	4.2 Impact of Data Removal

	5 Applications
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

