
Learnings from a Retail Recommendation System
on Billions of Interactions at bol.com

Barrie Kersbergen Sebastian Schelter
Ahold Delhaize Research & AIRLab, University of Amsterdam

bkersbergen@bol.com s.schelter@uva.nl

Abstract—Recommender systems are ubiquitous in the modern
internet, where they help users find items they might like. We
discuss the design of a large-scale recommender system handling
billions of interactions on a European e-commerce platform.

We present two studies on enhancing the predictive perfor-
mance of this system with both algorithmic and systems-related
approaches. First, we evaluate neural network-based approaches
on proprietary data from our e-commerce platform, and confirm
recent results outlining that the benefits of these methods with
respect to predictive performance are limited, while they exhibit
severe scalability bottlenecks. Next, we investigate the impact
of a reduction of the response latency of our serving system,
and conduct an A/B test on the live platform with more than
19 million user sessions, which confirms that the latency reduction
of the recommender system correlates with a significant increase
in business-relevant metrics. We discuss the implications of our
findings with respect to real world recommendation systems and
future research on scalable session-based recommendation.

I. INTRODUCTION

Today’s internet users face an ever increasing amount of
information.This situation has triggered the development of
recommender systems: intelligent filters that learn about the
users’ preferences and suggest relevant information for them.
With rapidly growing data sizes, the predictive performance,
processing efficiency and scalability of machine learning-
based recommendations systems and their underlying compu-
tations becomes a major concern.

In this paper, we describe the architecture of a real world
recommender system ABO for bol.com, a large European e-
commerce platform which handles billions of interactions on
several dozen million items every day in Section II. The ABO
(‘Anderen bekeken ook’, Dutch for ‘others also viewed’) rec-
ommendations are shown on the product detail page1 to enable
customers to discover other products that are relevant to them,
such as different versions of the same product, similar products
or products that are complementary to the displayed item.
We describe the individual components of our system, which
are backed by cloud infrastructure from the Google Cloud
Platform such as BigTable and BigQuery. In addition, we
detail our nearest-neighbor-based recommendation approach,
we discuss how we conduct distributed offline model training,
and how we efficiently serve the recommendations online with
low latency.

A natural question when operating such a real world
recommendation system is how to improve its predictive

1https://www.bol.com/nl/p/-/9200000104430048

performance. In this work, we explore two directions for
improvement, and present the results of two corresponding
studies. First, we investigate the potential of algorithmic
improvements in Section III. Neural networks have shown
outstanding performance in computer vision [1] and natural
language processing tasks [2], and we therefore evaluate
recently proposed neural network-based approaches [3]–[6] for
session-based recommendation on real data from our platform,
based on an existing academic study [7]. We evaluate the
predictive performance of these neural networks, as well as
their deployability for production settings, in terms of training
time, cost of hyperparameter search, prediction latency and
scalability. Next, we study a system-specific improvement:
we do not change the recommendation algorithm itself, but
optimise our serving infrastructure to drastically reduce its
response latency (Section IV). We describe how we control
the insertion rate of bulk updates into the production database
of our recommendation system, in order to adhere to a latency
SLA (service-level agreement) of 50ms for recommendation
responses. We run a large-scale online A/B test on 19 million
user session to investigate the impact of this response latency
reduction on the predictive performance of our recommender
system. In summary, we provide the following contributions:
• We discuss the design of a large-scale recommender system

handling billions of interactions on a European e-commerce
platform (Section II).

• We present two studies on enhancing the predictive per-
formance of this system: (i) We evaluate recent neural
network-based approaches on proprietary data from our e-
commerce platform, and confirm recent results outlining
that the benefits of these methods with respect to predictive
performance are limited, while they exhibit severe scalability
bottlenecks (Section III); (ii) We optimise the response
latency of our serving system, and conduct an A/B test on
the live platform with more than 19 million user sessions,
which confirms that the latency reduction correlates with
a significant increase in metrics based on purchases and
revenue (Section IV).

• We discuss the implications of our findings with respect
to real world recommendation systems, as well as future
research on session-based recommendation (Section VI)

https://bol.com
https://www.bol.com/nl/p/-/9200000104430048

II. SYSTEM ARCHITECTURE

In this section we provide a high-level overview of the
architecture of our recommendation system, as illustrated in
Figure 1. We describe our recommendation approach (Sec-
tion II-B), distributed model training (Section II-C), and how
to serve low-latency recommendations in response to user
requests (Section II-D).

A. Overview

ABO is designed for distributed computation and imple-
mented on top of Apache Spark [8]. All of our components
are loosely coupled, so they can run independently from each
other, while exchanging data via a distributed filesystem. Our
architecture consists of a batch system that is responsible
for executing data-intensive model training workloads offline
on 18 billion user-item interactions which is 3.5TB in size.
We periodically precompute the recommendations for every
item in our catalog, typically once per day for all 70M
products. The online serving system is responsible to serve
recommendations online with low latency. The most important
Big Query data source for the candidate algorithms is the
click data containing the historical production interactions
from customers, including clicks, purchases and shopping cart
additions. This data source grows by about 30M records per
day. We clean and filter this data, and join it with the catalog
and offer data sources to determine active recommendable
products. We describe the components of our system from
Figure 1 in detail:
Candidate generation. We compute nine recommender mod-
els that each generate recommendations for products in the
catalog: (1) Related-Products recommends products that where
clicked after clicking items, (2) Order-After-Click recommends
the products that where purchased after clicking an item,
(3) Purchased-Together recommends products that are pur-
chased together, (4) Family recommends products that only
differ in one product attribute such as size or color from a
recent item. (5) Similar recommends products that are similar
in title and description using cosine similarity with tf-idf
weighting. (6) Trending recommends products that are popular
in the same category (7, 8, 9) Creator, Brand & Publisher
recommend products from the same content creator, brand or
publisher. Note that each model has it own MLlib pipeline
and the parallel execution and machine resource allocation is
automatically handled by Spark.
Ensembling & business rules. The ensembling component
aggregates the outputs of all nine recommendation models
to generate a final set of recommendations per item, and
applies a set of manually defined business-specific filters to the
recommendations. These filters remove potentially unwanted
recommendations, such as combinations of adult and non-adult
products.
“Avalanche”. This component handles the bulk update of
the pre-computed recommendations into the Bigtable database
of the prediction server, our online serving component. It
is implemented on top of Apache Beam, and converts the

bu
si

ne
ss

 r
ul

es

ca
n

di
d

at
e

ge
ne

r a
tio

n

en
se

m
bl

in
g

“ a
va

la
n c

he
”

pr
ed

ic
tio

n
se

rv
e r

w
eb

 s
h

op

offline model training online serving

9
di

ffe
re

nt

re
co

 m
o d

el
s

1

load-aware
bulk update

2

3

4

Fig. 1. Architecture overview of the offline training and online serving
components of our retail recommendation system, based on Apache Spark and
Apache Beam, and backed by infrastructure from the Google Cloud Platform.

recommendations to a Protobuf format with a fixed max-
imum amount of 21 recommended products to guarantee
fast deserialization at serving time. The avalanche component
will automatically adjust its insertion rate into BigTable to
guarantee a low serving latency during the ingestion (see
Section IV for further details).

Prediction server. The task of this component is to serve
the recommendations to end users with low latency. We
implement it in Java on top of the Spring framework running
in a Kubernetes cluster. This component elastically scales its
underlying cluster of machines using Kubernetes’s Horizontal
Pod Autoscaler, by automatically spawning or removing extra
serving nodes based on the overall CPU load.

Webshop. This component communicates with the prediction
server and renders the final web page served to customers,
which also includes the product recommendations.

B. Recommendation Approach

Next we describe the nearest neighbor-based algorithms
underlying the first three approaches of our recommendation
models, and subsequently discuss how to implement the model
training in a scalable dataflow system.

Item-based recommendation. We leverage item-based collab-
orative filtering for recommendations [9], a simple but highly
popular approach, deployed in many production settings [10]–
[12]. This approach compares user interactions to find related
items in the sense of “people who like this item also like
these other items”. The resulting pairs of cooccuring products
are later on combined with the output from the other models
and re-ranked. Our system bases its recommendations on so-
called “implicit feedback data”, e.g., count data that can easily
be gathered by recording user actions such as clicks, shopping
cart items or purchases.

Collection and scoring of item cooccurrences. We first clean
the recorded interaction data in windows of 24 hours: we filter
out data from users who visited an unusual amount of items
during that time window. Next, we set the item cooccurrence
count c(t)uijg between item i and item j to one if we find a
cooccurrence in a sliding window of 42 days for a user u who
interacted with these items in the given window t. Note that
the count is 0 otherwise, and that we additionally record the
type of interaction g (e.g., click or purchase). Note that we

do not use personal identifiable information to determine the
recommendations in order to respect the privacy of our users.
Based on the collected cooccurrences, we compute the score
sij for all observed cooccurrences c(t)uijg of an item pair ij as
follows. We sum up the observed cooccurrence counts across
all users u, windows t and interaction types g. We apply an
interaction specific weight wg to each cooccurrence and decay
the score with a function γ(t) based on the amount of days
passed since that interaction happened, to compute the final
similarity score sij =

∑
u

∑
t

∑
g γ(t) wg c

(t)
uijg . We filter out

item pairs below a certain threshold to prevent recommending
pairs with low user support.
Ensembling. We finally compute an ensemble to aggregate the
item-to-item recommendations from our nine different models.
Our models include collaborative filtering based approaches
like the one described previously, but also content-based ap-
proaches that compute item similarity based on item metadata.
The latter approach has the advantage to also provide recom-
mendations for ‘cold-start’ items for which we have not seen
interactions yet and which cannot be handled by out-of-the-
box collaborative filtering algorithms therefore. The ensemble
combines the algorithm-specific scores from all models with
a weighted sum with manually tuned chosen weights. The
final weights are based on (i) the results of offline evaluation
experiments, measuring the normalized discounted cumula-
tive gain (NDCG) on held-out conversion, revenue and click
data; (ii) online A/B tests in the live system measuring several
business metrics; and (iii) qualitative offline evaluation by
business experts.

C. Distributed Model Training

Next, we describe how to compute our cooccurrence-based
recommendations with Apache Spark [8]. The input for our
model is clickstream data that spans several years of time,
containing more than 18 billion user-item interactions at the
time of writing. The dataset comprises 3.5 terabytes of data,
and is stored in Google BigQuery (BQ). This data contains
historical user actions from our webshop such as product
views, additions to the shopping cart, and purchase events.

We process this data in parallel with Apache Spark. We
model our computations based on the abstractions for fea-
ture transformations, models and evaluators of Spark ML-
Lib [13], which improve the reusability and composibility
of the computations. In accordance with our previously de-
scribed recommendation approach, we partition the user-item
interaction data by day (corresponding to the window t from
the previous section), and collect the item cooccurrences
via a distributed self-join on the user id. The collection of
the item cooccurrences for one day is independent of the
collection of the item cooccurrences for other days which
allows for massive parallelism in the computation. We store
the respective cooccurrence counts per day in the distributed
file system. The scoring of the cooccurrences is conducted by
a second Spark job, which reads these cooccurrence counts,
sums them up according to the scoring function and retains
the top scored item pairs per item.

We execute the resulting computation in the Google cloud
leveraging the Dataproc service2. The corresponding cluster
is configured to autoscale up to 75 worker nodes of type
n1-highmem-8 each with a 500GB disk. We use dataproc
image version ’1.4’ which provides Apache Spark ’2.4’. Ex-
ecuting the Spark jobs for the offline model training (all
nine recommendations models, ensembling, and business rule
filtering) takes approximately two hours.

D. Online Serving

The concerns of generating and serving the recommenda-
tions are separated in our architecture. The prediction server
component is responsible for serving the recommendations
with low latency. We implement it as a Java Spring service
with BigTable as database backend. Our service is designed to
perform auto-scaling of its computational resources: it spawns
or revokes additional machines based on the current CPU
load, and is also responsible for managing the amount of
BigTable machines. The service achieves this by monitoring
the CPU load of the BT machines every minute, and adjusting
the amount of machines correspondingly. In order to prevent
stale data being served from BT, we apply a simple optimistic
locking scheme: After data is written to BT, we update a
counter in a BT table and set the timestamp to the start of
the insertion time. Our service compares the timestamp of
that counter value with the column value timestamp before
serving the value for that key. If the counter timestamp value is
greater than the timestamp of the column value the row is not
returned. Our webshop performs approximately 1,500 requests
per second to the serving component of which approximately
400 requests per second are going to the recommender system.

A natural question when operating such a real world rec-
ommendation system is how to improve its predictive perfor-
mance. In the following sections, we explore two directions
for improvement.

III. NEURAL NETWORKS VERSUS NEAREST NEIGHBOR
METHODS FOR SESSION-BASED RECOMMENDATION

In recent years, neural networks have drastically outper-
formed traditional ML models in various domains such as
computer vision [1] and natural language processing [2]. It
is therefore a natural question to explore the benefits of
neural-based approaches in comparison to nearest neighbor
techniques (such as our system) for our e-commerce scenario
as well. In contrast to academic studies, we have to look at
additional dimensions such as scalability and training cost as
well, in order to judge whether it would make sense to deploy
a neural-based approach.

The academic setup that is closest to our production use case
is session-based recommendation, where the goal is to predict
the next item (or the set of next items) that a user will interact
with, given the current items of her session on ecommerce
datasets. Interestingly, recent academic research [7], [14] in-
dicates that neural-based approach do not outperform classical

2https://cloud.google.com/dataproc

https://cloud.google.com/dataproc

nearest neighbor approaches in this scenario. We replicate
a prominent study [7] on a sample of our production data
to evaluate whether it may be beneficial to invest in neural
approaches for our use case , and to investigate the scalability
and training performance of current neural-based approaches
for session-based recommendation on a large-scale ecommerce
data. We include our approach as well, even though it has not
been specifically designed and optimised for this particular
academic task, but can be considered a special case of session-
based recommendation as it only considers the most recent
item in the session. Our main goal of this study is to confirm
that the family of nearest neighbor-based algorithms provides
state-of-the-art performance on e-commerce recommendation
tasks.

A. Data & Algorithms

Dataset. We use real world clickstream data from our platform
for our study. We create five samples, each spanning 31 days
from different times of the year, in order to minimise the
impact of seasonal effects. We bin users by the amount of
purchases that they made, and apply stratified sampling based
on these bins to select a set of sessions that represents the
activities of a wide range of our customers. We include around
1.2 million actions on 120 thousand items in each sample.
Algorithms. We include eight different recommendation algo-
rithms in our evaluation, in accordance with [7]. Four of these
employ neural network-based learning approaches for session-
based recommendation: GRU4Rec [3], an RNN-based ap-
proach in combination with ranking loss functions [15] tailored
to the session-based recommendation setting; NARM [5], an
attention mechanism-based approach that aims to learn a user’s
sequential behavior in the current session; STAMP [6], an
attention mechanism-based approach that aims to learn a user’s
sequential behavior in the current session by also learning the
priority of the last item; and NEXTITNET [4], an approach
employing convolutions to learn high-level representations of
both short-and long-term item dependencies.

We additionally include the following four nearest-neighbor
methods from [7] in our study: AR (Association rules), an
approach based on counting pairwise item cooccurrences in
the observed sessions; SR (Sequential rules), a frequent pattern
mining approach based on sequential cooccurrences in the
observed sessions, as well as S-KNN & VS-KNN (Session
k-Nearest Neighbor), two nearest-neighbor approaches based
on session similarity, where the latter puts more emphasis on
recent events in sessions.
Experimental Setup. We evaluate the predictive performance
of all methods on our five data samples, based on the ex-
perimentation framework provided by Ludewig et al.3 We
use the first thirty days of each dataset for training and
evaluate the predictions for the subsequent 31st day. Testing
on a consecutive day also resembles our production setting
where we re-train our model every day. For each session in
the test data we replay one interaction after another. After

3https://rn5l.github.io/session-rec/index.html

vs
kn

n
sk

nn gr
u

na
rm ab

o
st

am
p ar sr

0.02

0.03 MAP@20

vs
kn

n
sk

nn gr
u

na
rm ab

o
st

am
p ar sr

0.04

0.06

0.08 Precision@20

vs
kn

n
sk

nn gr
u

na
rm ab

o
st

am
p ar sr

0.2

0.3

0.4
Recall@20

vs
kn

n
sk

nn gr
u

na
rm ab

o
st

am
p ar sr

0.20

0.25

0.30
MRR@20

vs
kn

n
sk

nn gr
u

na
rm ab

o
st

am
p ar sr

102

104

training (s)

vs
kn

n
sk

nn gr
u

na
rm ab

o
st

am
p ar sr

0

100

200

p90-pred (ms)

Fig. 2. Prediction quality, training time and the 90th percentile of the
prediction time for session-based recommendation with the neural-based (red)
and nearest-neighbor-based (green) recommendation approaches (including
our approach ABO which was not designed for this task), averaged over
five different data samples from our e-commerce platform.

each revealed interaction, we compute recommended items
and compare them to the remaining interactions. We execute
the training for each model in the Google cloud on a n1-
highmem-8 instance with a nvidia-tesla-t4 GPU.

Metrics. We report four metrics computed from the top 20
recommended items: Mean Average Precision (MAP@20),
Precision (P@20) and Recall (R@20) evaluate to what extent
an algorithm is able to predict the next items in a session,
while Mean Reciprocal Rank (MRR@20) evaluates to what
extent an algorithm is able to predict the immediate next
item in a session. We also do not report prediction times for
ABO, which are hard to compare to the times of the other
approaches, as ABO executes key-value lookups in BigTable
in GCP, which includes network communication.

Hyperparameter optimization. Hyperparameter search for
neural-based recommendation methods can be very time con-
suming, even on small data [7]. We therefore apply the follow-
ing approach to tune the hyperparameters of all methods. We
explore 100 combinations of hyperparameters with a random
search on a data subset comprised of 100,000 interactions, and
select the hyperparameters that result in the best MRR@20.
Note that we had to schedule the hyperparameter search in
parallel on different machines in the cloud to retrieve results
in a reasonable time, even when allowing the methods to use
GPUs. The hyperparameter search for NARM for example
took more than six days of compute time, (in contrast to less
than two hours for the VS-KNN approach)!

Results. Figure 2 shows the results of the predictive perfor-
mance measured by our metrics, and the train/test time for
neural-based and nearest-neighbor based approaches averaged
over our five different data samples. We do not provide results
for the NEXTITNET approach because it repeatedly crashed
during training, which we attribute to a dependency issue with
the provided implementation.

https://rn5l.github.io/session-rec/index.html

We find that the nearest neighbor approach VS-KNN con-
sistently outperforms all neural-based approaches, and even
provides a higher evaluation score for MRR@20, the metric
for which the neural-based approaches have been designed.
S-KNN outperforms all three neural networks in four out
of five metrics as well. ABO outperforms the neural-based
method STAMP in MAP and Precision, as well as the baseline
methods AR and SR (even though it has not been designed and
optimised for the academic task of session-based recommen-
dation). The time required to train the neural approaches is at
least an order of magnitude larger than the training time of
the neighbor based approaches. Additionally, two of the three
neural based methods require much more time for inference
than the nearest neighbor methods. The 90th percentile of the
time needed for a prediction with GRU4REC and NARM on
a small dataset is already higher than 100 milliseconds.

Discussion. The experimental results on our proprietary data
confirm the findings from the original study [7]: simple nearest
neighbor methods outperform recent neural network based
approaches for session-based recommendation on e-commerce
data. In addition, we make several observations with respect
to the deployability of the neural methods in a real world
production scenario: (i) These methods exhibit extremely long
training times for hyperparameter search and model training
even on very small datasets (100k observations for hyperpa-
rameter search and 1M observations for training). It is unclear
whether they would even scale to our current production
workload of several billion interactions at a reasonable training
cost and time; (ii) In addition, we saw the time to produce a
recommendation with GRU4REC and NARM on our small
evaluation dataset is already in a range that is far from
usable in a real world serving system, which has to guarantee
response times in the low millisecond range.

IV. IMPACT OF SERVING LATENCY ON
RECOMMENDATION PERFORMANCE

Most research focuses on improving the predictive per-
formance of recommender systems via algorithmic changes.
Motivated by our production setup, we are interested in the
impact of orthogonal, systems-related improvements. These
are in general hard to study for academic researchers without
access to real world systems. Work from [16], [17] indicates
that a reduction of the response latency has a positive impact
on the acceptance rate of a search engine. Therefore we
decide to investigate the impact of response latency on our
recommender system as well.

Data center migration. As part of a bigger reorganiza-
tion of infrastructure we migrated our serving component
and its database from our proprietary data center (DC) to
the Google Cloud Platform (GCP). This migration included
several changes such as upgrading the version of Java and
the libraries we use in our serving component, as well as
rewriting code for retrieving records from the database and
serving them. We use Bigtable (BT) in GCP as alternative to
Apache Cassandra from the DC setup. In the DC, we ran the

serving component in VMWare, while in GCP we run it via
Docker images. Note that the serving component has to adhere
to a strict service level agreement in each setup: If the webshop
does not receive a response within 150ms it will discard the
request and render the web page without the recommendation.
Optimization for serving latency during bulk updates. We
notice that this SLA is likely to be violated during the daily
bulk update of our pre-computed recommendations in the
prediction server (Section II). In order to adhere to the latency
SLA, the recommendations must be inserted without raising
the CPU load on BT too much. This is challenging because
the CPU load varies during the day and even while writing
the data. We address this issue by sharing the responsibility of
maintaining a low BT CPU load with the Avalanche job, which
inserts updated recommendations into BT. We add a rate limite
mechanism to control the insert rate of Avalanche as shown
in Algorithm 1, aiming for an average CPU load of 35% in
the BT nodes. We obtain the CPU load of the BT nodes every
minute, and update the insertion rate of the Apache Beam job
in Avalanche which conducts the bulk update.Note that the
number 10,000 refers to the minimum amount of requests per
second that a BigTable machine is guaranteed to answer.

Algorithm 1 Control of the insertion rate of Avalanche.
function CONTROL INSERTION RATE(r, c, b, d)

Input: Insertion rate r (insertions per sec) conducted by Avalanche,
average CPU load in BigTable c (percent), number of BigTable nodes b,
number of Dataflow nodes d in Avalanche.

Output: Updated insertion rate limit for Avalanche.

rmax ← (b · 10000) / d
δcpu ← 40− c
if c ≥ 40 return max(1, r + 20 · δcpu)
elseif c ≥ 35 return r
elseif c ≥ 30 return min(rmax, r + δcpu)
else return min(rmax, r + 3 · δcpu)

A. Experimental Evaluation

As part of our infrastructure migration we conduct a large
scale online A/B test on our e-commerce platform to measure
the impact of the reduction in serving latency on the accep-
tance of our recommendations.
Experimental Setup. Our website shows recommendations
on every product page and makes them available as soon
as the page loads. We run a large-scale online A/B test for
a period of two weeks, where we divide visitors into two
groups: The first group is served from the DC architecture,
while the second group is served from the GCP architecture.
We ensure that each visitor remains in the same A/B test group
for the duration of the experiment via a persistent cookie that
stores the group assignment. In total, we include more than 19
million user sessions in this experiment. The recommendations
served from the DC and GCP architectures originate from
the same algorithm and data, and are therefore identical. We
measure the distribution of the latency between our prediction
servers and webshops (deployed in DC and GCP), as well as
two important business metrics based on orders and revenues.
The circuit-breaker timeout in webshop for the recommender

service had been set to 150ms for this experiment, and our
infrastructure is constantly monitored for requests discards by
site reliability teams.
Results & Discussion. During the period of the experiment,
we observe that the 90th percentile of the response latency
distribution between the prediction service and our webshop4

running in the DC is 32ms, while the GCP setup only
requires 15ms. Furthermore, we observe a 2.19% increase in
an important order-based metric, as well as a 2.31% increase
in a corresponding revenue-based metric. We confirm that the
resulting positive impact in metrics is statistically significant
with a chi-squared test of independence. In summary, we
find that important order and revenue based metrics correlate
positively with a reduction in response latency by 17ms. Our
results indicate that users are more likely to perform a purchase
if recommendations are served with lower latency, given two
content-wise identical recommender systems.

V. RELATED WORK

Recommender systems are an active research area [18],
which is regularly fueled by industry challenges such as the
“Netflix Prize” competition [19]. Unfortunately, it is often
difficult to translate academic progress into deployable solu-
tions which need to be able to handle billions of interactions.
The winning solution of the Netflix challenge for example
never went into production [20]. A classical approach to
recommendation mining are nearest-neighbor methods [21]–
[24], which are widely deployed in industry [10]–[12]. In the
area of session-based recommendation, which is especially
important for e-commerce scenarios, a lot of neural network-
based approaches have recently been proposed [3]–[6], and
there is an ongoing discussion of their relation to conceptually
simpler nearest-neighbor methods, which outperform them on
many datasets [7], [14].

VI. LEARNINGS & FUTURE WORK

In this, work we focused on how to improve the predictive
performance of a real world recommendation system with
both algorithmic and systems-related approaches. We confirm
the finding from [7] that the simple nearest-neighbor-based
VS-KNN approach outperforms modern neural network-based
methods in session-based recommendation on e-commerce
data. We additionally found that VS-KNN is orders of mag-
nitude faster to train than the neural-based methods. This is
an important property for a production systems that have to
conduct regular retraining of their models, and adhere to strict
time constraints for that.

Our second study indicates that reducing the response la-
tency for serving has a significant impact on the acceptance of
recommendations in e-commerce. We A/B tested this impact
on over 19 million sessions where we were able to give visitors
a better experience by improving the serving latency, which
resulted in a significant increase in business-relevant metrics.

4Note that we measure the response latency at the webshop, our frontend
server; The total latency for the customers includes additional network
communication and the rendering of the web page on their devices.

We ran this study during an ongoing data center migration,
which gave us the unique opportunity to investigate the effect
of improving the latency, instead of making it artificially worse
as done in previous studies for search engines [16], [17].

In the future, we will explore how to scale-up well-scoring
algorithms for session-based recommendation (in particular
VS-KNN) to a full production workload with several billion
interactions. We think that our studies also outlined interesting
research directions for improving the suitability of the neural-
based recommendation algorithms for production settings.
This research was supported by and carried out at bol.com. All con-
tent represents the opinion of the author(s), which is not necessarily
shared or endorsed by their respective employers and/or sponsors.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” NeurIPS, 2012.

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” ICLR, 2014.

[3] B. Hidasi, A. Karatzoglou, L. Baltrunas, et al., “Session-based recom-
mendations with recurrent neural networks,” arXiv:1511.06939, 2015.

[4] F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He, “A
simple convolutional generative network for next item recommendation,”
WSDM, pp. 582–590, 2019.

[5] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive
session-based recommendation,” CIKM, pp. 1419–1428, 2017.

[6] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp: short-term
attention/memory priority model for session-based recommendation,”
KDD, pp. 1831–1839, 2018.

[7] M. Ludewig, N. Mauro, S. Latifi, and D. Jannach, “Performance
comparison of neural and non-neural approaches to session-based rec-
ommendation,” RecSys, pp. 462–466, 2019.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, et al, “Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing,” NSDI, pp. 15–28, 2012.

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabora-
tive filtering recommendation algorithms,” WWW, pp. 285–295, 2001.

[10] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news person-
alization: scalable online collaborative filtering,” WWW, 2007.

[11] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi,
S. Gupta, Y. He, M. Lambert, B. Livingston, and D. Sampath, “The
youtube video recommendation system,” RecSys, pp. 293–296, 2010.

[12] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu, “Tencentrec: Real-time
stream recommendation in practice,” SIGMOD, pp. 227–238, 2015.

[13] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning
in apache spark,” JMLR, vol. 17, no. 1, pp. 1235–1241, 2016.

[14] D. Jannach and M. Ludewig, “When recurrent neural networks meet the
neighborhood for session-based recommendation,” RecSys, 2017.

[15] B. Hidasi and A. Karatzoglou, “Recurrent neural networks with top-k
gains for session-based recommendations,” CIKM, pp. 843–852, 2018.

[16] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann,
“Online controlled experiments at large scale,” KDD, 2013.

[17] I. Arapakis, X. Bai, and B. B. Cambazoglu, “Impact of response latency
on user behavior in web search,” SIGIR, pp. 103–112, 2014.

[18] F. Ricci, L. Rokach, and B. Shapira, “Introduction to recommender
systems,” in Recommender systems handbook, 2011, pp. 1–35.

[19] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, 2009.

[20] X. Amatriain, “Building industrial-scale real-world recommender sys-
tems,” RecSys, pp. 7–8, 2012.

[21] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabora-
tive filtering recommendation algorithms,” WWW, pp. 285–295, 2001.

[22] J. J. Levandoski, M. Sarwat, M. F. Mokbel, and M. D. Ekstrand, “Rec-
store: an extensible and adaptive framework for online recommender
queries inside the database engine,” EDBT, pp. 86–96, 2012.

[23] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel,
“Streamrec: a real-time recommender system,” SIGMOD, 2011.

[24] S. Schelter, C. Boden, and V. Markl, “Scalable similarity-based neigh-
borhood methods with mapreduce,” RecSys, pp. 163–170, 2012.

	Introduction
	System Architecture
	Overview
	Recommendation Approach
	Distributed Model Training
	Online Serving

	Neural Networks versus Nearest Neighbor Methods for Session-Based Recommendation
	Data & Algorithms

	Impact of Serving Latency on Recommendation Performance
	Experimental Evaluation

	Related Work
	Learnings & Future Work
	References

